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ABSTRACT

With advancements of wireless and sensing technologies, recent studies have demonstrated technical feasibility
and effectiveness of using acoustic signals for sensing. In the past decades, low-cost audio infrastructures
are widely-deployed and integrated into mobile and Internet of Things (IoT) devices to facilitate a broad
array of applications including human activity recognition, tracking, localization, and security monitoring. The
technology underpinning these applications lies in the analysis of propagation properties of acoustic signals
(e.g., reflection, diffraction, and scattering) when they encounter human bodies. As a result, these applications
serve as the foundation to support various daily functionalities such as safety protection, smart healthcare,
and smart appliance interaction. The already-existing acoustic infrastructure could also complement RF-based
localization and other approaches based on short-range communications such as Near-Field Communication
(NFC) and Quick Response (QR) code. In this paper, we provide a comprehensive review on acoustic-based
sensing in terms of hardware infrastructure, technical approaches, and its broad applications. First we describe
different methodologies and techniques of using acoustic signals for sensing including Time-of-Arrival (ToA),
Frequency Modulated Continuous Wave (FMCW), Time-Difference-of-Arrival (TDoA), and Channel Impulse
Response (CIR). Then we classify various applications and compare different acoustic-based sensing approaches:
in recognition and tracking, we review daily activity recognition, human health and behavioral monitoring
hand gesture recognition, hand movement tracking, and speech recognition; in localization and navigation,
we discuss ranging and direction finding, indoor and outdoor localization, and floor map construction; in
security and privacy, we survey user authentication, keystroke snooping attacks, audio adversarial attacks,
acoustic vibration attacks, and privacy protection schemes. Lastly we discuss future research directions and
limitations of the acoustic-based sensing.

1. Introduction

Besides of camera- and RF-based solutions, acoustic signal provides
another dimension for sensing, because microphones and speakers are

Many real-world applications in smart home and office environ-
ments, such as security surveillance and protection, smart healthcare,
and smart appliance interaction, use sensing technologies. For exam-
ple, sensing technologies based on camera, Radio-Frequency (RF), and
acoustic, have been utilized in human activity recognition and tracking,
localization and navigation, and security monitoring, etc. Among them,
camera-based sensing [1] is the most popular. For non-intrusiveness
and convenience, there are a number of studies in RF-based techniques
(e.g., RFID [2], WiFi [3]). RFID is widely applied in business func-
tions, such as storage and supply chain management [4], due to its
battery-free feature. Moreover, with the wide availability of indoor
WiFi infrastructures, WiFi-based sensing techniques have shown great
potential in implementing sensing functions in a smart home or office.
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now widely equipped in mobile and wearable devices, as well as
smart appliances. For example, Galaxy Note 3 and Amazon Echo are
integrated with multiple advanced microphones for noise elimination
and far-field voice pickup. Galaxy S9 and Google Home have multiple
speakers for stereo playback. Moreover, many mobile devices have
begun to support high recording capability (e.g., 192 kHz) targeted at
audiophiles, resulting in a significant enhancement of acoustic-based
sensing capabilities.

Surveillance cameras may raise privacy concerns, especially at home
and office environments. Moreover, camera-based sensing is highly
dependent on the environmental lighting conditions, making it hard
to work under conditional of low illumination, smoke, and opaque
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Fig. 1. A general structure for acoustic-based sensing and applications.

obstructions. In contrast, acoustic-based sensing does not have privacy
issues with images and is deployable in less favorable conditions.

RFID-based solutions usually require high-cost RFID readers (i.e.,
>$100) and RFID tags that need to be attached to human bodies,
thereby largely limiting their application scenarios. In comparison,
acoustic-based sensing is more accessible due to the wide deploy-
ment of speakers and microphones on off-the-shelf mobile devices,
without additional cost or rapid deployment request. In addition, due
to the long-range and good penetration properties of WiFi signals,
WiFi-based sensing can capture human activities in a large area and
can even detect people moving behind walls [5]. However, due to
the long sensing range, WiFi-based sensing can be easily interfered
by surrounding environments (e.g., people in motion or change of
furniture’s positions). Although the coverage area of acoustic-based
sensing is limited due to the fast attenuation of acoustic signals, it
is more resilient to surrounding movements and the environmental
change. This makes acoustic-based sensing a valuable complement to
other sensing methodologies in many application scenarios.

Acoustic-based sensing and its applications have a long history.
In 1900s, people started using SOund NAvigation Ranging (Sonar) to
detect objects under water [6]. Acoustic-based sensing has been applied
in the B-ultrasonic examination [7] to create images of internal body
structures such as tendons, muscles, and internal organs. Furthermore,
acoustic-based sensing solutions can transmit messages [8]. In recent
years, with the omnipresence of mobile and wearable devices and
the advancement in audio chips, acoustic signals have become easily
accessible with high quality and for a wide range of sensing and
communication functions. In this paper, we provide a comprehensive
survey of acoustic-based sensing technologies and their application
domains.

Some existing surveys reviewed different applications of acoustic-
based sensing, such as localization [9] and communication [10]. Some
other surveys concentrated on analyzing the applications enabled by
different kinds of signals (e.g., camera, RF, acoustic). The examples
are activity recognition [11,12], localization [13], and user authenti-
cation [14]. Different from the existing surveys, our survey aims to
provide a more comprehensive understanding of acoustic-based sens-
ing, including hardware infrastructure, main sensing techniques, and
its broad applications, as shown in Fig. 1.

1.1. Hardware infrastructure

Mobile devices and smart appliances are equipped with audio in-
frastructures with high definition audio capabilities. The hardware
infrastructure, including microphones, speakers, and audio chips, is
used to record, generate, and process acoustic signals, respectively.
With recent audio-based virtual control software (e.g., Siri, Google
Assistant, Alexa Voice Service), there is an increasing demand for
noise cancellation and far-field voice pickup. As a result, off-the-shelf
smartphones and smart appliances are equipped with several micro-
phones. Generally there are two speakers in a smartphone: an internal
one for regular phone calls, and an external one for louder playback.
Several smart devices (e.g., Galaxy S9, Google Home) even have stereo
external speakers to improve our hearing experience in watching films
or listening to music. Moreover, with the development of audio chips,
many mobile devices began to support high recording and playback
capability (e.g., 192 kHz) targeted at audiophiles. The wide availability
of microphones and speakers provide a great chance for acoustic-based
sensing, while audio chips with better quality result in a significant
enhancement of sensing accuracy.

1.2. Techniques

After acoustic signals are captured, the next step is to characterize
them with various sensing techniques, such as signal strength variation,
phase change, Doppler shift, Time-of-Arrival (ToA)/ Frequency Mod-
ulated Continuous Wave (FMCW), Time-Difference-of-Arrival (TDoA),
and Channel Impulse Response (CIR). An acoustic signal can be decom-
posed into a series of sine waves with different amplitudes, phases, and
frequencies. By measuring the differences among these basic properties,
such as signal strength variation, phase change, and Doppler shift,
the movements of objects (e.g., human, phone) can be identified for
various sensing applications, such as daily activity recognition [15-
20], hand gesture recognition [30-39], hand gesture tracking [42-
44,46,47], localization [59,60,70,71], user authentication [97-103],
and keystroke snooping attacks [117-119]. In addition, environmental
sounds (e.g., ambient noise, acoustic emanations of human activities)
can be characterized by these basic properties to enable two-factor
authentication [108,109] and keystroke snooping attacks [114-116].
In communication systems [145-162], signal strength, phase, and fre-
quency are also used for data modulation, i.e., amplitude, phase, and
frequency shift keying.
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Table 1
Acoustic-based applications and their main techniques.
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Section # Applications Main Techniques
Physical properties of Acoustic Signal ToA & FMCW TDoA CIR Other Techniques
Daily Activity Recognition [15-20] [21] - - [22,23]
Human Health & Behavioral Monitoring [24,25] [26,27] [28,29] - -
Section III Hand Gesture Recognition [30-39] [40] - [41] -
Hand Movement Tracking [42-47] [48-50] [51] [52] -
Speech Recognition - - - - [53-58]
Ranging & Direction Finding [59,60] [61-67] [68,69] - -
Section IV Indoor & Outdoor Localization [70,71] [72-86] [87-90] - -
Floor Map Construction - [91-95] - - -
User Authentication [96-103] - - [104] [105-107]
Two-Factor Authentication [108-111] - - - [112,113]
Section V Keystroke Snooping Attacks [114-120] [121,122] [123] - [124,125]
Acoustic Adversarial Attacks - - - [126] [127-131]
Audio Vibration Attacks - - - - [132-135]
Voice Assistant Privacy Protection - - - - [136-144]
Section VI Short-Range Communication [145-162] - - - -

Among sensing technologies, ToA measures the propagation time
of a signal traveling between a transmitter and a receiver. Combined
with the propagating velocity of acoustic signals (e.g., 344 m/s for most
conditions), the propagation distance can be derived. Therefore, ToA
can serve as a key enabler of localization applications [72-86]. To get
an accurate measurement, ToA needs precise synchronization between
transmitters and receivers. Such a requirement is difficult to achieve,
and hence hinders the deployment of ToA on commercial devices. In
contrast, FMCW leverages the geometry relationship of chirp signals
and derives the frequency difference between transmitted and received
signals to quantify the ToA. Without the need for synchronization of
commercial devices, FMCW becomes more attractive in practice and
has been applied in many applications requiring fine-granularity, such
as health monitoring [26,27], human movement tracking [50], and
floor-map construction [95].

With the goal to relax the necessity of device synchronization, TDoA
is proposed to measure the time difference in arrival times between
the signals received by a pair of microphones. Presently smart devices,
such as smartphones, smart appliances, and IoT devices, are usually
equipped with multiple microphones for dual recording, noise cancel-
lation, etc. This facilitates the usage of TDoA in various domains, such
as driving behavior monitoring [28,29], hand movement tracking [51],
localization [68,69,87-90], and user authentication [104]. Moreover,
instead of directly quantifying received acoustic signals, recent inves-
tigations [41,52] analyze the CIR using channel estimation (e.g., the
least square channel estimation) to capture subtle variations caused by
human body movements. These techniques have been used in various
functionalities, such as hand gesture recognition [41] and hand gesture
tracking [52]. We will discuss them in detail in Section 2.

1.3. Acoustic-based applications

With these fundamental technologies, a broad range of applications
are developed to improve the quality of our daily life and work effi-
ciency, as summarized in Fig. 1. We classify these applications into four
categories and discuss them in later sections: Recognition and Tracking
in Section 3, Localization and Navigation in Section 4, Security and
Privacy in Section 5, and Short-range Communication in Section 6.

Recognition and Tracking includes daily activity recognition, hu-
man health and behavioral monitoring, hand gesture recognition, hand
movement tracking, and speech recognition. By tracking daily activities
(e.g., walking, sitting, and cooking) of a person [17,20-23], it is possi-
ble to evaluate his or her daily routine and life style, and lead to other
related application areas such as elder care and fitness tracking. In com-
parison, vital signs of human (e.g., breathing, heartbeat) [24,26,27] are
finer-grained and can serve as an important indicator of a person’s sleep

quality, health conditions, and stress level. Besides daily and health-
related applications, inattentive driving behavior detection (e.g., phone
usage, eating) [15,16,28,29] is important for driving safety. In hand
gesture recognition (i.e., hand gesture [31-34], finger gesture [36]),
interaction interfaces on smart and mobile devices are enabled. Com-
pared with hand gesture recognition, hand movement tracking is more
flexible for human—computer interaction applications, such as remote
controllers [50] and virtual keyboards [44,45]. Furthermore, speech
recognition have been widely applied in healthcare, marketing, and
Internet of Things (IoT), etc. We will review speech recognition process
and the commonly used models [53-55].

Localization and Navigation discusses related functions and applica-
tions in ranging and direction finding [59-69], indoor and outdoor
localization [70-90], and floor map construction [91-95]. Ranging
and direction finding serve as the basis of localization and navigation
applications, such as face-to-face multi-user gaming and in-car phone
use detection. Indoor and outdoor localization are critical for location-
based applications such as target localization, store advertisement,
inventory management, animal habitat tracking, etc. Moreover, Floor
map construction is needed for indoor navigation, VR/AR, construction,
facility management, etc.

Security and Privacy investigates both defense and attack mech-
anisms leveraging acoustic-based sensing techniques in security and
privacy applications. Security-related applications include user authen-
tication [96-104,108-113], keystroke snooping attacks [114-125], and
audio adversarial attacks [126-131]. Acoustic-based user authentica-
tion functions are proposed to safeguard security in mobile devices.
In addition to the first round of defense in smart and mobile devices
by user authentication, other studies also employ acoustics (e.g., am-
bient noise, pre-defined acoustic signals) as the second round of the
authentication process. On the other hand, acoustic signals could be
used to snoop keyboard keystrokes [114-116,120-124] and eavesdrop
touch-screen patterns and keystrokes [117-119]. These activities raise
security concerns in users. This section also introduces privacy-related
applications, such as acoustic vibration attacks [132-135] and voice
assistant privacy protection [136-143].

In addition to sensing applications, there are studies in acoustic-
based short-range communication including audible communication
[145-150], near-ultrasonic communication [151-153], ultrasonic com-
munication [154,162], and liquid-based medium acoustic communi-
cation [155-158]. Active studies employ audible signals for com-
munication. Acoustic signals are noisy and unpleasant for human.
Near-ultrasonic signal (i.e., 18 ~ 20 kHz) and ultrasonic signal (i.e., >
20 kHz) are outside of the range of most human perceptions. As a result,
researchers develop near-ultrasonic and ultrasonic communication for
a better user experience. Due to the satisfactory propagation property,



Y. Bai et al.

20dB

15dB

/. 10dB
5dB
0dB

Time(s)

Frequency(kHz)

Fig. 2. Illustration of Doppler shift.

20dB
== Transmitted Signal
=== Received Signal 15dB

10dB

Frequency (kHz)

5dB

0dB

Time(s)

Fig. 3. Illustration of FMCW technique.

acoustic communication is one of the most effective communication
techniques in liquid-based environments.

The related work for each application category is summarized in
Table 1. The rest of this paper is organized as follows. Section 2 reviews
three key techniques in acoustic applications. Section 3 introduces
four categories of acoustic-based applications with an emphasis on
activity recognition and tracking. Section 4 describes investigations
in localization and navigation. Section 5 covers work in security and
privacy. Section 6 discusses acoustic-based short-range communication.
Section 7 presents the limitations of existing work and future research
direction. Section 8 concludes this survey paper.

2. Techniques for acoustic-based sensing and applications

In this section, we introduce key techniques used in acoustic-based
sensing and applications, including signal strength variation, phase
change, Doppler shift, Time-of-Arrival (ToA) & Frequency Modulated
Continuous Wave (FMCW), Time-Difference-of-Arrival (TDoA), and
Channel Impulse Response (CIR).

2.1. Physical properties of acoustic signal

According to the principle of Fourier series, any signal can be de-
composed into a series of sine waves. Therefore, the physical properties
of an acoustic signal can be represented by three parameters in a sine
wave, i.e., amplitude, phase, and frequency. Researchers have exploited
these properties of acoustic signals for sensing.

Computer Networks 181 (2020) 107447
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2.1.1. Signal strength

The signal strength in an acoustic signal is associated with the power
level and easy to measure. Due to propagation dispersions and medium
absorptions, the signal strength of acoustic signals would attenuate as
the signal propagates through a distance. Assume an acoustic signal is
first emitted with a signal strength I,. After propagating over a distance
d, the final signal strength I, is given by
: S o, ¢))
where k is a normalization coefficient, « is the attenuation coefficient
affected by the frequency of acoustic signals, temperature, relative
humidity, atmosphere, etc. Based on Eq. (1), the distance d can be
calculated from 1,, 1,, k, and d.

=1

Measured by commercial devices as the amplitude of acoustic sig-
nals, signal strengths serve as the basis of many acoustic-based sensing
applications, such as daily activity recognition [19], health monitor-
ing [24,26], hand gesture recognition [37], indoor localization [71,83],
and keystroke snooping [114-116]. However, the measurements can be
greatly impacted by ambient noises. As a result, applications only using
signal strength cannot achieve robust and satisfactory performance. To
handle this, several studies combine signal strength with ToA [24,26,
83] or phase change [71] for practical applications.

2.1.2. Phase change

In addition to the signal strength, the phase change induced by
the propagation of acoustic signals can also support the acoustic-
based sensing. For a single-frequency acoustic signal, the phase shift
is related to the time difference. Specifically, the phase shift A¢ can be
represented as

Ad = 2nf AL, )

where f and At are the frequency and time shifts of acoustic signal,
respectively. The phase value is periodic from 0 to 2z, so that 4¢ can
only be accurately derived within the cycle time 1/f. In other words,
only the distance within the wavelength of acoustic signal 4 (i.e., ¢/ f)
can be precisely measured, where ¢ is the propagation speed of an
acoustic signal.

Early studies [43,47] show the feasibility of using phase changes
modulated by Orthogonal Frequency-Division Multiplexing (OFDM)
and Continuous Wave (CW) to carry out fine-grained finger movement
tracking. After that, another work [118] employs the phase changes of
acoustic signals induced by finger movements to eavesdrop keystrokes
on touch screens. Due to the periodicity of a sine wave, the phase
change is probable to be the same when the moving distance exceeds a
wavelength of the acoustic signal. As a result, without prior knowledge
of starting and ending points of a movement, using phase changes alone
can hardly achieve precise tracking.
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2.1.3. Doppler shift

The Doppler effect is the frequency shift detected by a moving
observer relative to a signal source. Specifically, when an object moves
at a velocity v along with a direction 6 from the receiver, it will result
in a Doppler shift Af as
_ 2uvcos(0)
=—

Af fes 3

s
where v, is the velocity, and f, is the pilot frequency of acoustic signals.
From Eq. (3), v can be calculated from the measurements of Af, f,, 0,
and v,. Fig. 2 shows an example of the Doppler shift associated with
a hand moving back and forth in front of a smartphone equipped with
both a speaker and a microphone. It can be seen that when the hand
moves back to the microphone (i.e., the receiver), the frequency of
acoustic signal shifts toward the negative direction, and vice versa.
Also from Eq. (3), with the estimated 4f and the measured v, the
distance and location of objects can be derived. Researchers utilize
Doppler shifts to recognize hand gestures [31-34], monitor driving
behavior [15,16], and track hand movements [42,44,50].

2.2. Time-of-Arrival (ToA) and Frequency Modulated Continuous Wave
(FMCW)

ToA is the propagating time of a signal traveling between a trans-
mitter and a receiver. Combined with the propagating velocity v of
acoustic signals, the propagating distance d can be calculated as, d =
v X ToA, where v = 344 m/s in most situations. This method needs
the transmitter and receiver to be precisely synchronized to avoid
measurement error.

ToA has become a key enabler of measuring distances between ob-
jects, and is widely implemented to support various applications, such
as gesture recognition [40], hand movement tracking [48], localiza-
tion [72-86], and floor map construction [91-95]. Usually transmitters
and receivers are not installed on the same device. To synchronize
them, researchers use customized infrastructures (e.g., RF [74], on-
board vision sensor [76], LED light [77], and specialized sonar [75])
with increased deployment cost.

FMCW maps time difference to frequency shift in order to measure
the ToA without the synchronization requirement. The transmitted and
received signals in frequency domain under a FMCW-based application
are shown in Fig. 3. The transmitter keeps transmitting a chirp signal
sweeping the frequency from f, to f,. By comparing the frequencies
of the transmitted and the received signals, frequency shift 4/ could
be measured. The slope of the chirp signal can be determined with the
frequency band B (i.e., f, — f;) and unit duration 7, i.e., slope = B/z.
From the geometry similarity principle of a triangle, ToA can be derived
as
ToA = 2/ X7 0

B
Based on the ToA, the propagating distances of acoustic signals can be
measured.

Without the necessity of synchronization, FMCW could achieve
satisfactory performance in detecting minute movements. Many inves-
tigations employ FMCW in various compelling applications, such as
monitoring sleep quality [26] and heartbeats [27], and constructing
floor map [95].
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2.3. Time-Difference-of-Arrival (TDoA)

Due to measurement errors in commercial devices, it is difficult
to realize perfect clock synchronization for accurate measurements of
ToA. Other than FMCW, TDoA measures the time difference in arrival
times of signals received by a pair of receivers, without the synchro-
nization need. At least two microphones are equipped on off-the-shelf
mobile and IoT devices. This can facilitate the implementation of TDoA.
TDoA locates a target at intersections of hyperbolas or hyperboloids
that are generated with foci at each fixed receiver of a pair. As shown
in Fig. 4, Mic 1 and Mic 2 is a pair of foci with distance d,. By
measuring the TDoA between these two microphones, the difference in
the distances to the microphones, r; — r,, can be obtained. The signal
source is located on the half hyperbola defined by these parameters.
Similarly, the signal source is on the other half hyperbola defined by
the associated pair of microphones (i.e., Mic 2 and Mic 3). Therefore,
the signal source is on the intersection of these two half hyperbolas.

Efforts have been put into leveraging TDoA to realize driving be-
havior monitoring [28,29], hand movement tracking [51], and in-
door localization [88,89]. Another work [123] even employs TDoA
to accomplish mm-level audio ranging for the side-channel attack on
eavesdropping user inputs on keyboards.

2.4. Channel Impulse Response (CIR)

CIR represents an acoustic signal’s propagation in response to the
combined effect of scattering, fading, and power decay of transmitted
signals. When an acoustic signal S(¢) is transmitted with a speaker, it
propagates through multipath and is received by a microphone as R(z).
Let h(r) denote the CIR of the acoustic signal’s propagating channel. The
relationship between the transmitted and received signals is

R(t) = S() * h(1), )

where * is a convolution operator. Due to the discrete representation
of received acoustic signals, Eq. (5) is represented as R[n] = S[n] * h[n]
in real application scenarios. To resolve h[n], Least Square (LS) channel
estimation [163] is commonly used because of the low computational
complexity. Specifically, the speaker first transmits a known signal
m= [m 1My, .o m N], and the microphone receives the reflected signals
y = [yl,yz,...,yN], where N is the length of transmitted acoustic
signal. A circulant training matrix M is generated by the vector m.
The dimension of M is P X L, i.e., the vector m circulates P times and
constructs the P rows of M. The CIR 4 is estimated as

h=WM"M)y""MTy,, (6)

where y; = [y;41. Y142 ---» ¥4 p|- In channel estimation, the length of
CIR L and the reference P should be determined manually to satisfy
the constraint of N = P+ L. Note that increasing L will estimate more
channel states but reduce the reliability of estimation.

Object movements can be captured from the analysis of the changes
in CIR. However, similar to directly using received signals, CIR also
introduces the surrounding information (e.g., people walking by) of
the sensing areas. The fine-grained sensing capability of CIR-based
approaches magnifies the interference of device movements [41].

3. Recognition and tracking

Human activity recognition and tracking are the critical functions
to support a broad range of applications including security monitoring,
vital signs management, human-computer interaction, and elder care.
Acoustic-based approaches can be divided into five categories: daily
activity recognition, human health and behavioral monitoring, hand
gesture recognition, hand movement tracking, and speech recognition.
In this section, we discuss related research in these categories, as shown
in Fig. 5.
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Table 2
Comparison of acoustic-based daily activity recognition work.
Work Feature Accuracy Device Applied algorithm
Stork et al. [20] MFCC 94% Robot Random Forest
BodyScope [19] MFCC 71.5% Modified headset SVM
SoundSense [17] Phase, Signal Strength, around 90% Commercial devices Decision Tree &
Frequency, and Bandwidth Markov Model
EI [22] N/A around 78% Commercial devices CNN
Akira et al. [23] N/A around 94% Commercial devices RNN-LSTM
3.1. Daily activity recognition

Our daily activities include walking, sitting, cooking, eating, etc.
Tracking these activities aims to help a person live safer and health-
ier. As shown in Fig. 6, daily activity recognition systems are built
to solve classification problems. A unique source of information for
these recognition systems is the sounds produced by daily physical
activities. We present two typical flowcharts of daily activity recog-
nition systems, which are machine-learning and deep-learning based
respectively. For both approaches, the first step is data preprocessing,
which is designed for eliminating the environmental interference and
normalizing the data for future use. For traditional machine learning
approaches, manually extracted features are required as inputs for
training a robust model. BodyScope [19] is developed as a wearable
activity recognizer based on commercial headsets to monitor mouth
movements (e.g., eating, laughing, and speaking). This work extracts
acoustic features (i.e., Mel-Frequency Cepstrum Coefficient (MFCC))
from captured sounds and classifies them into specific categories by
feeding the features into Support Vector Machine (SVM). MFCC is a
representation of the short-term power spectrum of an acoustic signal.
Stork et al. [20] employ MFCC feature and Random Forest algorithm for
twenty two categories in daily activities. However, these systems utilize
customized infrastructure, i.e., modified headsets [19] and robots [20],
thus have difficulties in deployments. SoundSense [17] monitors daily
activities (e.g., walking, driving, riding a bus) using off-the-shelf mo-
bile devices. This work extracts acoustic features (i.e., phase, signal
strength, frequency, and bandwidth) from captured sounds and clas-
sifies them into specific categories using decision trees and the Markov
models. However, feature extraction highly relies on human knowledge
and experience. Deep learning tends to overcome these limitations,
which automatically learn the features through the network for model
training. EI [22] leverages acoustic signals reflected by surrounding
objects to implement an environment-independent activity recognition
method. This work builds a novel adversary network to extract a
representation of received signals. It can remove the uniqueness of
different environments and individuals to predict activities under un-
seen environments. Another work [23] uses acoustic and acceleration
signals as input, and employs Recurrent Neural Network (RNN) based
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Motion Vibration

Fig. 7. Illustration of vital sign monitoring by sensing the body movements leveraging
acoustic signals [27].

on Long Short-Term Memory (LSTM) for human activity classification.
Acoustic-based daily activity recognition studies are summarized in
Table 2.

3.2. Human health and behavioral monitoring

Health-related activities and driving behavior monitoring are two
vital topics for evaluating a person’s health conditions (e.g., sleep qual-
ity, stress level) and protecting his/her safety. We introduce acoustic-
based studies in these two areas.

Health Monitoring. Health-related activities (e.g., breathing, heart-
beats) result in minute body movements. Due to the non-intrusiveness
nature, acoustic-based monitoring has attracted much research atten-
tion. Specifically, FMCW has been used to extract acoustic reflections
from human bodies to capture minute movements. With this tech-
nology, a few existing studies (e.g., [26,27]) can capture human’s
breathing and heartbeats. For instance, Nandakumar et al. [26] can
detect sleep apnea events. Qian et al. [27] design a heartbeat moni-
toring system, Acoustic cardiogram, as shown in Fig. 7, which extracts
signal phases of received FMCW signals to capture more fine-grained
movements induced by heartbeats. Subsequent studies incorporate ma-
chine learning techniques to classify various activities. For example,
Ren et al. [24] extract acoustic features (i.e., MFCC) and employ SVM to
differentiate sleep events. BreathListener [25] extracts energy spectrum
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Fig. 8. Illustration of Doppler shift-based hand gesture recognition.

density of acoustic amplitude and uses Convolutional Neural Network
(CNN) to recover fine-grained breathing waveforms in driving envi-
ronments. All of these studies employ just commercial smart devices
without the need for any supplemental infrastructures.

Driving Behavior Monitoring. With no wireless signal (e.g., WiFi)
coverages inside moving vehicles, it is natural to use acoustic-based
technologies to monitor driving behaviors. Yang et al. [28,29] take
advantage of speakers in vehicles to detect phone usage of drivers. To
do this, the two studies measure the TDoA with assistance of counting
the number of acoustic samples between two beeps to detect the
location of a phone in a vehicle. Besides making phone calls, inattentive
driving behaviors (e.g., leaning forward to pick up from floor, eating,
or drinking) are another type of common dangerous driving behaviors.
Recently, ER [15,16] reveals that these activities can be captured
through Doppler shifts of acoustic signals. ER sets up a gradient model
forest, which contains multiple classifiers to recognize different driving
behaviors and detect inattentive driving behaviors before they are 50%
finished, in order to issue earlier warning alerts.

3.3. Hand gesture recognition

Hand gestures of humans, such as hand movements and finger
motions, are crucial interactions between users and smart devices.
To improve users’ experience, many device-free gesture recognition
approaches are proposed. Among them, acoustic-based gesture recog-
nition attracts enormous attentions, because inexpensive audio equip-
ment is widely available.

Hand Gesture Recognition. Human interacting with smart devices
is primarily by hands, which are often in constant motion. Doppler shift
is one of the most natural and straightforward methods to recognize
hand gestures. This type of systems work in four steps: data prepro-
cessing, Doppler extraction, physical features exhibition, and gesture
recognition, as shown in Fig. 8. In addition to the frequency shift used
to derive the velocity as described in Section 2.1.3, the amplitude of
the received signal can be combined to detect the proximity between
target object and acoustic source, as well as the size of the object.
Early work [30] develops a customized device consisting of three
microphones and one speaker to process Doppler shifts of ultrasonic
signals. Inspired by this work, many Doppler-based systems [31-34]
are proposed. SoundWave [31] first explores audio components in
most commercial off-the-shelf devices to recognize in-air hand ges-
tures. Doplink [32] and Airlink [33] extend Doppler shifts of acoustic
signals to realize multi-device interactions (e.g., rapid device pairing
and file transferring). AudioGest [34] uses only one speaker and one
microphone to carry out a multi-level gesture recognition and derives
extensive information, such as in-air time, average moving speed and
waving range.

In addition, Point & Connect (P&C) [40] implements a device pair-
ing system leveraging chirp signals, in which a user only needs to
make a simple hand gesture toward the target for device pairing. P&C
measures the distance change between a user and candidate devices by
estimating the ToAs of the acoustic signals with synchronized clocks.
And the target device is the one with the maximum distance deduction.
However, P&C requires an initial wireless channel of communication to
enable the connection between the source device and the target device.
To overcome this limitation, Spartacus [35] exploits Doppler shift to
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Fig. 9. OFDM echo profiles at two time points [47].

initiate interactions. When the user makes a gesture pointing directly
to the target device, the maximum frequency shift can be observed.

Finger Gesture Recognition. In comparison to relatively distant
and coarse-grained hand gestures, closer and finer-grained finger move-
ments are becoming popular in human-computer interactions. Hence,
there is much active research in this area. UbiK [36] enables ubiq-
uitous surfaces as keyboards for mobile devices by identifying finger
gestures from received acoustic signals. Specifically, UbiK transmits
chirp signals and receives signals reflected by keystroke fingers. From
the received signals, pattern-related information (i.e., the amplitude
spectrum density) is extracted from the frequency domain of acous-
tic signals, and finger gestures can be recognized by comparing the
Euclidean distance of amplitude spectrum densities between extracted
features and profiles. Other systems (e.g., [37-39]) use acoustic signals
in recognizing handwriting to extend the input interface of human—
computer interactions. SoundWrite [37] and SoundWrite II [38] lever-
age amplitude spectrum density and acoustic features (i.e., MFCC) to
characterize handwriting features, and use K-Nearest Neighbors (KNN)
to match the captured features with labeled features in the database.
Furthermore, WordRecorder [39] extracts the spectrogram of acoustic
signals reflected by a writing hand and feeds it to a designed CNN to
identify written words. More recently, UltraGesture [41] utilizes CIR
together with a deep learning method, i.e., CNN network, to achieve
a mm-level gesture recognition, which outperforms Doppler-based and
FMCW-based solutions.

3.4. Hand movement tracking

Hand movement tracking provides more flexible capability to sup-
port various human-computer interaction applications, such as re-
mote controller, virtual keyboard, and Virtual Reality (VR) gaming.
Acoustic-based hand movement tracking systems are summarized in
Table 3.

Echoloc [48] produces two-channel chirp signals using a smart-
phone plugged with a stereo speaker to estimate the ToAs between
a hand and two speakers. In this way, the position of the hand can
be determined. Another work, EchoTrack [51], estimates a hand tra-
jectory with the assistance of measuring the ToAs of acoustic signals
received by two microphones in a smartphone, without any special
hardware. This work combines Doppler shifts and ToAs to optimize
the tracking accuracy. By calculating the speed of hand movement
according to Eq. (3), the hand locations could be accurately estimated.
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Table 3

Comparison of acoustic-based hand movement tracking work.
Work Technique Resolution Specific hardware Device
Echoloc [48] ToA 5 c¢cm for 2D Yes Smartphone, Tablet
EchoTrack [51] TDoA & Doppler shift 3 cm for 2D No Smartphone, Tablet
AAMouse [42] Doppler Shift 1.4 cm for 2D Yes Smartphone, Tablet
CAT [50] FMCW & Doppler Shift 5-7 mm for 2D, 8-9 mm for 3D Yes Smartphone, Tablet
LLAP [43] Phase Change 3.5 mm for 1D No Smartphone, Tablet
FingerIO [47] OFDM 8 mm for 2D No Smartphone, Tablet
Strata [52] CIR 1.0 cm for 2D No Smartphone, Tablet
VPad [44,45] Amplitude & Doppler Shift 1.55 cm for 2D No Smartphone, Tablet, Laptop
Vernier [46] Phase Change 4 mm for 2D No Smartphone

AAMouse [42] applies Doppler shifts of acoustic signals to track hand
movements in real time. It sends inaudible signals at different fre-
quencies and uses Doppler shifts to estimate the speeds and distances
of hand movement. To improve the robustness, the system combines
the estimations from different frequencies to perform outlier removal.
CAT [50] further enhances the tracking accuracy by analyzing both
FMCW and Doppler shift of acoustic signals. FMCW maps time differ-
ence to frequency shift, without the need for precise synchronization.
Another two systems, LLAP [43] and FingerIO [47], only use com-
mercial off-the-shelf smartphones to achieve mm-level motion tracking,
without additional devices and synchronized clocks. LLAP [43] tracks
hand movements via measuring the phase changes in received acoustic
signals. Specifically, LLAP first measures the phase change of acoustic
signal reflected by static hand as a reference. When the hand moves
toward/backwards the sound source, the phase changes proportional to
the ToA, according to Eq. (2). With the known ToA and wavelength / of
acoustic signal (i.e., I = <, where c is the speed and f is the frequency
of sound), the distance of hand movement could be derived. Finge-
IO [47] leverages the OFDM technique to realize fine-grained finger
tracking. Two OFDM echo profiles at two different time instances are
shown in Fig. 9. It can be seen that a shift in the wave peak due to the
change in the arrival time of the echo when the finger moves from 34 cm
to 35 cm to the microphone. Recently, Strata [52] employs CIR instead
of raw received signals to take the multipath propagation into account.
It first finds out which channel states give the best performance and
then tracks the hand movement with phase changes of these certain
channels. All of these studies are designed for mobile devices, such as
smartphones and tablets. Due to the different layout of audio devices,
most of them cannot be directly deployed on traditional laptops. To
handle this issue, VPad [44,45] designs a tracking system for traditional
laptops without touchscreens. It utilizes an energy feature and Doppler
shift to track horizontal and vertical hand movements, respectively,
and can put real-time and highly accurate tracking into effect. A more
recent work, Vernier [46], introduces a novel method to calculate the
phase change based on very few samples and improves the real-time
tracking capability. Specifically, instead of calculating the phase change
using FFT, Vernier calculates the phase change with a small window of
signal, and the number of local maximum corresponds to the number
of cycles of phase change.

3.5. Speech recognition

With speech recognition, machines can understand requests from
human voices. Many emerging services enabled by this technique have
been deployed to bring benefits to our daily life. For example, in
workplaces, people can schedule meetings and print documents on
voice requests. Drivers use speech recognition to control radios and
make phone calls while keeping their sights on the roads. Furthermore,
patients can ask for common symptoms of diseases and quickly find in-
formation from medical records. Many research efforts have been made
in this area with the wide deployment of speech recognition. Speech
recognition mainly requires several steps of processing, including signal
processing, feature extraction, and recognition [164,165]. Signal pro-
cessing mainly includes sampling (e.g., aliasing, filtering) and spectral
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Fig. 10. Structure for acoustic-based localization and navigation applications.

analysis (e.g., framing, windowing). After that, the commonly used
features, such as Linear Predictive Cepstral Coefficients (LPCC), MFCC,
and Perceptual Linear Prediction (PLP), are extracted for recognition.
The recognition step links the observed features of the speech signals
with the expected phonetics of the hypothesis sentence.

Widely used recognition approaches are Gaussian Mixture Model-
Hidden Markov Model (GMM-HMM) [53,54] and Deep Neural
Network-Hidden Markov Model (DNN-HMM) [55,56]. HMM is an
extension of Markov chain that can provide a probability function of
the potential results [166]. GMM, represented as a weighted sum of
Gaussian probability density functions (PDFs), is used to determine
how well each state of the HMM corresponds to the voice input. Over
the past few years, advances in both machine learning algorithms and
computer hardware have led to more efficient methods for training
DNN. Thus, many studies (e.g., [55,56]) have been exploring DNN for
speech recognition. Instead of using GMM, these studies use DNN to
produce posterior probabilities over HMM states as outputs. Comparing
DNN-HMM with GMM-HMM, the outputs are expanded from a small
number of phonemes into a large number of them. Several studies [57,
58] confirm that DNN-HMM model outperforms GMM-HMM model.

4. Localization and navigation

Localization and navigation support a broad range of pervasive
applications (e.g., digital map construction, mobile robot) and attract
a lot of research efforts in past decades. With the properties of omni-
directional propagation and strong diffraction, acoustic signals are
reliable for locating people in low visibility environments (e.g., dark,
foggy, or dusty conditions). In this section, we discuss related research
in three categories: ranging and direction finding, indoor and outdoor
localization, and floor map construction, as shown in Fig. 10.

4.1. Ranging and direction finding

Ranging and direction finding focus on measuring distance and
angle between a signal source and a target object. They are the basic
techniques of localization and navigation. Many efforts have been put
into developing device-to-device ranging and direction finding solu-
tions to support various applications, such as navigation, face-to-face
multi-user gaming, and the driver’s phone detection.

Ranging. Early studies such as Scott et al. [61] and Lopes et al. [62]
carry out the ranging functions with ToA and TDoA techniques. Both
research demand accurate synchronized clocks for ToA measurement
and can only realize limited ranging resolutions (i.e., 15 cm [61]
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Work Category Technique Resolution Indoor/Outdoor Infrastructure Frequency Band
Guoguo [74] Passive ToA 0.25 m Indoor Infrastructure-based 15-20 kHz
CondioSense [75] Passive ToA N/A Indoor Infrastructure-based 12-23 kHz
Haddad et al. [78] Passive ToA & TDoA 0.2 m Indoor Infrastructure-free 14-20 kHz
Sundar et al. [79] Passive & Active TDoA 0.3 m Indoor Infrastructure-free N/A
WalkieLockie [80,81] Passive ToA 0.63 m Indoor Infrastructure-based 17-24 kHz
Sanchez et al. [88] Passive TDoA 0.1 m Indoor Infrastructure-based N/A
Swadloon [60] Passive Doppler Shift 0.92 m Indoor Infrastructure-based 20 kHz
SITE [70] Passive Doppler Shift 0.42 m Indoor Infrastructure-based 17-19.5 kHz
Beep [82] Active ToA 0.6 m Indoor Infrastructure-free 4.01 kHz
Qiu et al. [83] Active ToA 0.14 m Indoor Infrastructure-free 2-4 kHz
Liu et al. [84] Active ToA 1-2m Indoor Infrastructure-free 16-20 kHz
EchoTag [71] Active Signal Strength & 0.01 m Indoor Infrastructure-free 11-22 kHz
Phase Change

AMIL [87] Active TDoA 0.5 m Indoor Infrastructure-based 18-20 kHz
Murakami et al. [89] Passive & Active TDoA 0.13 m Indoor Infrastructure-based 14.75-18.25 kHz
Auto++ [90] Passive ToA & Doppler Shift meters Outdoor Infrastructure-free 0-4 kHz
Pinna et al. [86] Passive ToA 1.5m Outdoor Infrastructure-based 3-7 kHz

and 40 cm [62]). Several investigations [64-67] develop acoustic-

based ranging systems and put centimeter-level resolution into effect. c |

However, the need for customized hardware infrastructures restricts | ,

the wide deployment of these systems. Without clock synchronization I Reference |

and specialized hardware, BeepBeep [63] designs an algorithm called object I,E

Elapsed time between the two Time Of Arrivals (ETOA) to precisely |

measure the distance between devices. Each of the two peer devices . 3 L l

transmits an acoustic signal, and starts recording from its microphone - = = 7 7

simultaneously. ETOAs are calculated by two devices individually, and A Acoustic B

the distance between devices can be derived by exchanging the time Phone source

duration information with its peer. This work can accomplish a ranging
resolution of 4 cm. We refer the update rate as the number of times
in a second that the system updates its distance measurements. The
update rate of BeepBeep is arbitrarily low because the two devices are
not synchronized so that a time window should be allocated to separate
sound signals from different devices. Subsequent explorations [68,69]
apply the similar technique. Whistle [68] enables several receivers to
measure the ToAs of transmitted signals from a target device so that
they can optimize the update rate for real-time ranging. This work
achieves 10 ~ 20 cm ranging resolution from measuring the TDoA of
different receivers. And it relies upon coordination among the receiving
devices to estimate the location of the source device. RF-Beep [69]
takes advantage of both RF and acoustic signals to measure the TDoA
for ranging. Because the RF signal has different propagation time from
the acoustic signal, RF-Beep uses the propagation time difference to
measure the TDoAs, and the ranging resolution is 50 cm. Both studies
address the timing uncertainty of sending and receiving acoustic signals
to speed up the low update rate. These two can only achieve semi-
meter ranging resolutions, which is far from satisfaction for indoor
localization.

Direction Finding. Direction finding is another important research
area for localization and navigation. Early work [59] reveals that
Doppler shift of acoustic signals is able to perform direction finding.
The mean error of direction finding is 18.0°, which is not satisfactory.
Swadloon [60] follows this work and reduces the error to 2.1° by
combining velocities captured from the Doppler shift and the inertial
sensors (i.e., accelerometer and gyroscope). The experimental setup in
a vertical view of this work is shown in Fig. 11. Specifically, an acoustic
source keeps playing single-frequency signals to a receiver (i.e., phone),
where the orientation angle of the acoustic source is # and the distance
between these two is L. The reference objects A, B, and C are used for
evaluating the accuracy of direction measurements. When a user shakes
the phone, the velocity of movement v is calculated from the readings of
inertial sensors, and the Doppler shift Af is measured by microphone.
According to Eq. (3), the direction of phone «, is calculated with the
known frequency of acoustic signal f and the velocity of acoustic signal
v,. Supported by varying reference objects, L and f are changed so that
@, can be measured for each configuration.

Fig. 11. Illustration of device-to-device direction finding [60].

4.2. Indoor and outdoor localization

Indoor and outdoor localization has been well-studied in the mo-
bile computing community. Locations of users are essential for vari-
ous applications, such as targeted advertising, tour guides, navigation
aids, and social networking. Acoustic-based localization systems are
summarized in Table 4.

Passive Indoor Localization. In contrast to outdoor localization,
indoor localization can be compromised by complex environments. For
example, GPS signals can be blocked or weakened by walls or nearby
buildings. This makes well-studied GPS-based localization approaches
ineffective. Hence, many research efforts have been made to utilize
easily attainable acoustic signals for indoor localization. Many studies
deploy additional sensors to transmit acoustic signals received by mo-
bile devices, so as to put acoustic-based localization into effect. This
kind of acoustic-based localization is called passive localization [89].

Two early approaches [72,73] capture acoustic fingerprints of back-
ground spectrum to determine an indoor location. However, these
solutions may be vulnerable to noises and incur high energy costs. To
solve this problem, ToA becomes a straightforward option for accurate
indoor localization. Guoguo [74] localizes target users via measuring
the ToA of acoustic signals. This work can provide sufficient cov-
erage with advanced signal processing techniques, and improve the
location update rate by increasing the transmission speed of acous-
tic signals with a symbol-interleaved signal structure. This study can
accomplish an average localization accuracy of 0.25 m in normal envi-
ronments. More recent investigations [75-77] employ ToA to localize
targets in indoor environments. In addition to the ToA, another study
SITE [70] combines Doppler shifts of acoustic signals with vision-
based techniques for indoor localization, whose median localization
error is 0.42 m. SITE deploys a group of speakers transmitting signals
with different frequencies. By measuring the Doppler shifts, relative
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Fig. 12. Illustration of acoustic-based active indoor localization.

directions between the phone and the speakers can be derived. After-
ward, SITE uses the angle differences to compute a set of locations,
and the vision-based techniques define the final location. Although
these studies provide satisfactory localization performance, the need
for extra infrastructures (i.e., RF [74], onboard vision sensor [70,76],
LED light [77], and specialized sonar [75]) limits the wide adoption of
these passive localization methods. More recently, WalkieLokie [80,81]
localizes a target by measuring the relative position between a smart-
phone and an acoustic speaker installed in the target object to estimate
ToA with specially designed pulse signals. The WalkieLokie’s approach
dramatically decreases the deployment cost with only smartphones and
low-cost speakers. However, its mean error of ranging is 0.63 m, falling
behind the infrastructure-based methods.

Active Indoor Localization. Another body of work localizes users
via actively transmitting acoustic signals from speakers in smart de-
vices. This is referred as the active localization [89], an example
of which is illustrated in Fig. 12. The smart device hold by a user
(i.e., signal source) continuously transmits acoustic signals when the
user moves in the indoor environment. Three microphones (i.e., Mic
1, Mic 2, and Mic 3) are placed around the sound source to measure
the three ToAs, with which the distances r;, r,, r; can be calculated
by multiplying ToAs by the speed of sound. Then the signal source’s
location can be determined from r|, r,, and r; by geometry.

Many studies use this technique for acoustic-based indoor localiza-
tion. For instance, Beep [82] employs a group of distributed acoustic
sensors to localize users equipped with roaming devices synchronized
by WiFi. The user transmits acoustic signals using the equipped roam-
ing device, while the acoustic sensors receive the signal and estimate
the ToAs with their processing unit. Then the position of roaming de-
vice is determined by the distances from those sensors. This work has an
accuracy of 0.6 m in more than 97% cases. Qiu et al. [83] use ToA and
signal strength measurements to implement high-speed 3-D continuous
localization for phone-to-phone scenarios. Since each phone has two
microphones, four distances for each pair of mic-speaker combinations
are calculated using the ToAs and the angle between two smartphones
is derived by the law of cosines. They realize localization resolution
within 0.14 m in 90% cases. Liu et al. [84] develop a peer-assist indoor
localization system, which combines the acoustic-based localization
with WiFi-based approach to enhance the accuracy. Specifically, WiFi-
based localization information can be optimized by recruiting other
ambient smartphones using distances between smartphones. The lo-
calization error can be significantly reduced from 6 ~ 8 m (only
WiFi-based) to 1 ~ 2 m. With the cost of continuously transmitting or
receiving acoustic signals, these three systems are constrained by the
limited power supply of hand-held mobile devices. EchoTag [71] solves
the power problem with the help of previous locations of a smartphone.
Specifically, this work first determines the coarse-grained location with
WiFi SSID and tilt. If this information is matched, the system captures
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Fig. 13. Different radian, distance, and amplitude patterns of different kinds of indoor
areas [94].

the acoustic signature in the frequency domain to estimate the fine-
grained position. All of the four studies [71,82-84] concentrate on
self-localization, i.e., localizing the position of a smartphone with its
own hardware. In contrast, AMIL [87] allows a smartphone to localize
its neighboring smartphones. The smartphone transmits beeps while it
is moved in the air, while the listeners measure the TDoAs between
beeps. Assuming the listeners are static, their locations can be derived
from the TDoAs and the movement trail of smartphone. This approach
can estimate the positions of 12 people in a room within an average
margin of error of 0.5 m. More recent explorations [88,89] combine
both passive and active localizations to improve the localization perfor-
mance. In these studies, two specialized speakers are pre-deployed, and
a smartphone measures TDoA from its two microphones to locate the
position of the smartphone, which constructs the passive localization.
Then, the smartphone transmits a chirp signal, and measures the ToAs
to estimate the distances to side walls, which performs active indoor
localization. The two results are combined to improve the localization
performance.

Outdoor Localization. There are a few systems extending acous-
tic sensing to outdoor localization. For instance, ENSBox [85] is a
distributed and self-calibrating localization system for outdoor environ-
ments, including custom-built hardware with each node consisting of a
4-microphone array. However, it might be impractical to install a large
number of outdoor sensors. Other investigations localize emergency
sound signals in an outdoor environment. Auto++ [90] localizes sur-
rounding vehicles leveraging TDoA and measures the motion of sound
source using Doppler shift. Pinna et al. [86] use acoustic sensor network
to localize gun shots. When shooting happens, ToAs between the sound
source and acoustic sensors are evaluated to measure the distances
between them.

4.3. Floor map construction

Existing studies [91,92] detect the obstacles (e.g., walls and furni-
ture) in the area of interest and construct floor maps through measuring
ToA and Angle-of-Arrival (AoA) of acoustic signals, respectively. These
approaches however require basic infrastructures (i.e., robots), making
them infeasible in some of practical application scenarios. To design
a low-cost floor map construction approach, subsequent studies uti-
lize regular smartphones as the signal transmitter and receiver. For
example, Kashimoto et al. [93] integrate an ultrasonic gadget into a
smartphone for floor map construction. This work first estimates the
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Table 5

Comparison of acoustic-based user authentication work.
Work Category Technique Accuracy Frequency Band Activity
Zhou et al. [96] Passive MFCC 89% Audible range Keystroke dynamics
BreathPrint [97] Passive GFCC 94% Audible range Human breathing gestures
VoiceLive [101] Active ToA 99% Inaudible range Vocal position inner mouth
VoiceGesture [98] Active Doppler Shift 99% 20 kHz Mouth movement
LipPass [102,103] Active Doppler Shift 93.1% 20 kHz Mouth movement
SilentKey [99] Active Doppler Shift 86.7% Inaudible range Mouth movement
Wang et al. [100] Active Doppler Shift 97% 96 kHz Gait gesture
EchoPrint [104] Active FMCW 93.8% Inaudible range Face recognition
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Fig. 14. Structure for acoustic-based security and privacy applications.

room size and shape via measuring ToAs of acoustic signals, then
elaborates the details of the floor map with motion sensors in the smart-
phone. Without any supplemental device for users, BatMapper [94]
implements a multi-modal solution, i.e., employing inertial sensors
and acoustic signals, to construct floor maps. Specifically, BatMapper
adopts inertial sensors to measure the radian of smartphone. After
that, the system transmits and receives chirp signals using speakers
and microphones of a commercial smartphone. Through analyzing the
acoustic signals, BatMapper derives the amplitudes and ToAs to detect
different indoor space configurations (e.g., cluttered area, corner, wide-
open space). Fig. 13 illustrates the detection using inertial sensors and
acoustic signals. There are four turn points in Fig. 13(a) indicating
heading orientation changes, which are detected by the inertial sensors.
When detecting the orientation changes, the system activates acoustic-
based sensing. In Fig. 13(b), different orientations and power changes
can exhibit different kinds of areas such as cluttered area, wide corner,
and stairs entrance. In Fig. 13(c), a peak in received sound intensity
indicates a narrow corner, while a drop in the intensity represents
a large open space. However, this may need great training effort in
estimating parameters. To do without training, SAMS [95] estimates
indoor contours by a person moving around with a smartphone. This
work leverages FMCW to measure critical and structural information
(e.g., corners and clusters) with less training efforts than BatMapper.
Specifically, the FMCW module is customized by exploring its design
parameters (i.e., bandwidth, chirp duration), studying its sensitivity un-
der various environments, and extracting FFT features from its profiles
to measure the distance and construct the floor map.

5. Security and privacy

As smart and mobile devices are becoming a big part of our daily
life, they are often used to store important information, including per-
sonal identity and other sensitive data. This trend raises many potential
security concerns. In this section, we discuss the issues of security
and privacy in mobile device’s audio infrastructures (i.e., microphones
and speakers), which are among the most integrated components in
mobile devices. The processes of acoustic-based security and privacy
applications are shown in Fig. 14.

5.1. User authentication

As the first layer of defense in smart and mobile devices, user
authentication mechanisms play a crucial role. Among all the user
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authentication approaches, biometrics-based solutions perform authen-
tication through measuring physiological or behavioral factors, such as
fingerprint, face, iris, gait, and voice. All these modalities are made
possible by various types of sensors (e.g., camera [167,168], micro-
phone [96,101], and Inertial Measurement Unit (IMU) [169,170]) and
RF signal interferences (e.g., WiFi [171,172] or RFID [173,174]). IMU
(e.g., accelerometers and gyroscopes)- and camera-based approaches
provide precise authentication results. However, they might either
inflict intrusiveness or bring privacy concerns. RF-based approaches
could provide authentication service in a wider area. However, RFID-
based solutions require sensor deployment, and WiFi-based solutions
rely on exhaustive signal profiles of surrounding environments, which
largely limits their application scenarios. As a complement, acoustic-
based authentication has been well explored because of its low-cost
properties and the wide deployment of speakers and microphones in
mobile devices. We summarize the acoustic-based user authentication
systems in Table 5 and discuss them in this section.

Voiceprint- and Acoustic Emanation-based User Authentica-
tion. Using voice biometrics for authentication has been well explored
in the past decades. The pitch, tone, and volume in a person’s voice
are associated with his/her physiological characteristics (i.e., size and
shape of throat and mouth) and behavioral patterns (i.e., voice pitch,
speaking style). Such a relationship is called voiceprint widely em-
ployed in the user authentication area to support various applications
(e.g., voice assistant) [175,176]. To realize the voiceprint-based user
authentication, a number of methods have come up, including Gaussian
Mixture Model-Universal Background Model (GMM-UBM) [177], GMM-
supervector [178], i-vector model [105] and Deep Neural Network
(DNN)-based models [106,107], etc. The basic idea of GMM-UBM is to
utilize a combination of Gaussian probability density functions (PDFs)
to characterize the voice for modeling the individual uniqueness. Ap-
plying GMM to speaker modeling provides the user with a specific PDF,
from which a probability score can be obtained. And the UBM, i.e., a
pre-trained GMM, is incorporated as the basis of raw GMM to reduce
the enormous training data requirements. Though GMM-UBM achieves
satisfactory performance in voiceprint authentication, its requirement
for aligned voice samples introduces significant computational com-
plexity. Thus, GMM-supervector [178] is developed to obtain a fixed-
dimensional vector from a variable-duration utterance. Combining with
traditional classification methods (e.g., SVM), GMM-supervector can
authenticate individuals in a lightweight manner. Different from GMM-
UBM and GMM-supervector models considering speaker factors only,
i-vector model [105] involves channel factors (e.g., noises), which
facilitates the authentication under an unseen channel distortion. The
popularity of DNN is rising due to easily accessible software and
affordable hardware solutions. The recent rapid development of DNN
also prompts new methods for voiceprint authentication, such as d-
vector model [107] and x-vector model [106]. However, due to the
open propagation properties of sound, the voices of legitimate users can
be easily recorded by attackers, making most of the voiceprint-based
authentication models vulnerable to replay attacks [98,102].

Existing studies [96,97] use audible acoustic emanations from spe-
cific human behaviors for user authentication. Zhou et al. [96] use
the acoustic emanations from keystroke dynamics to authenticate a
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Fig. 15. Illustration of acoustic-based two-factor authentication.

user’s identity. This work extracts several acoustic features (i.e., sig-
nal strength of acoustic signal, MFCC) and further applies a machine
learning approach (i.e., SVM) for authentication. Also, BreathPrint [97]
extracts acoustic features (i.e., Gammatone Frequency Cepstral Coeffi-
cients (GFCC)) from audible sounds of human breathing in three levels,
i.e., sniff, normal, and deep breathing, for user authentication. Similar
to voiceprint authentication, these studies are based on the extracted
features of acoustic emanations, and they thus may be vulnerable to
replay attacks. Moreover, since both keystroke acoustic emanations and
breathing sounds are in the audible frequency range, these approaches
would be easily interfered by ambient environmental noises.

Ultrasonic-based User Authentication. There have been studies
in utilizing inaudible acoustic signals to sense human behavior for
user authentication. These studies determine whether a login subject
is a human or pre-recorded evidence (e.g., video and sound record)
to replay attacks. Zhang et al. [101] measure the TDoA of received
acoustic signals to distinguish the sounds of people from those of
mechanical speakers. When a person is speaking, the TDoAs of two
microphones change in a sequence of phoneme sounds, while TDoA is
static under replay attacks. This system requires the user to place audio
devices next to a specific position of his/her mouth. To do without
this requirement, their following work [98] measures Doppler shifts
of acoustic signals to recognize articulatory gestures with a password
spoken in a user’s habitual ways of speech. The collected password is
used for the conventional user authentication, while the Doppler shift of
the audio file is extracted for liveness detection. LipPass [102,103] and
SilentKey [99] explore lip movements and Wang et al. [100] study gait
patterns induced by gait gestures of humans as unique behaviors for
user authentication. These systems process the Doppler shifts produced
by body motions with the need of specialized device for A/D and
D/A conversions. EchoPrint [104] utilizes audio devices in smartphones
and frontal camera to extract facial contour for user authentication.
In particular, it collects face echos using FMCW, and extracts acoustic
features employing CNN to allow for phone-holding pose changes.
Meanwhile, facial landmarks are detected with the camera. As joint
features, acoustic features and facial landmarks are fed to SVM classifier
for training and classification.

5.2. Two-factor authentication

Acoustic-based sensing has also been applied in the Two-Factor
Authentication (2FA) field, where a user is granted access only after
two kinds of factors are successfully checked by a system. Factors can
be knowledge (e.g., a password), possessions (e.g., a smart card), or
inherence (e.g., fingerprints). Part of research has focused on novel
acoustic-based approaches to detect the proximity between a mobile
device and a browser as the second factor, as shown in Fig. 15.
As the first of such studies, Sound-Proof [108] uses ambient noises
as the second factor in authentication to enhance the security and
privacy of smart devices. It measures the cross-correlation between
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ambient noises received by the user’s smartphone and the browser.
This system might have security vulnerabilities. Either notification or
alarm sounds triggered by APPs on smartphones could be mistreated
as ambient noises to defeat the second factor authentication in Sound-
Proof [109]. Subsequent studies, Home Alone [110] and Listening
Watch [111], are proposed to use randomly-selected acoustic signals
for authentication. Home Alone employs active notification sounds
generated by user’s smartphone to measure the proximity to browser,
while Listening Watch uses human speech as the sound factor to detect
the proximity between smartwatch and browser. Similar to Sound-
Proof, they use cross-correlation to measure the similarity of the sounds
recorded by the device on user’s body and the one being used to log in.
On the basis of previous studies, Proximity-Proof prevents man-in-the-
middle and co-located attacks. Proximity-Proof transmits the two-factor
authentication response to the browser over OFDM-modulated acoustic
signals instead of WiFi or other Internet connections. During the trans-
mission, unique fingerprints of audios are extracted to authenticate
the smartphone that transmits the signals. This step serves as the first
proximity check that can resist man-in-the-middle attack. Such acoustic
fingerprint techniques are also applied in the Internet of Things (IoT)
device authentication protocol [113]. Subsequently, a two-way ranging
approach [63] measures the distance between two devices to resist
the co-located attack, so that the attacker sits beside the user cannot
illegally log in.

5.3. Keystroke snooping attacks

In addition to the aforementioned authentication, other investiga-
tions reveal potential attacks on mobile devices, laptops, and speech
recognition systems using acoustic signals. Keystroke snooping attacks
are described and discussed in this section to raise security and pri-
vacy awareness of typing using keyboard and performing touch-screen
operations.

Keyboard Keystroke Snooping Attacks. Two systems [114,115]
reveal that acoustic emanations of keyboard would leak typing in-
formation. They extract the signal processing primitives (i.e., FFT,
cepstrum) of acoustic emanations and apply machine learning tech-
niques (i.e., neural network, linear classification) for keystroke snoop-
ing. Berger et al. [116] combine a dictionary with acoustic emanations
to design a more practical keystroke snooping attack without any
training. Zhu et al. [121] perform a context-free keystroke snooping
attack without any dictionary. This work measures the TDoA of acoustic
signals to localize a potential keystroke area with the requirement of
three collaborated phones. Liu et al. [123] put only one smartphone
close to the keyboard to capture the keystroke sounds. The measure-
ment of TDoAs are grouped and then clustered based on MFCC features.
A parallel work [120] proposes to combine acoustic emanations with
accelerometer readings to extract typing information. This work ex-
plores the FFT power of received acoustic signals, i.e., the amplitude
of acoustic signals in frequency-domain, to accurately find the start
and end points of a keystroke. Another work [124] focuses on recog-
nizing combined keystrokes instead of a single keystroke since signal
fragments are overlapped with each other when two keys are pressed
simultaneously. A recent work [122] designs a position-free keystroke
snooping attack, in which both TDoA and MFCC are used to determine
the relative position between a keyboard and a smartphone, and the
potential keystroke area. All of these systems are based on audible
keystroke acoustic signals and subject to interference of ambient noises
in the surroundings.

Touch-Screen Patterns and Keystroke Eavesdropping Attacks.
Touch-screen operations such as pattern drawing and typing rarely
produce audible sounds. Patterns and keystrokes eavesdropping attacks
are only made possible with the assistance of actively transmitting in-
audible acoustic signals. PatternListener [117] leverages phase change
of such signals to track finger movements, in order to eavesdrop unlock
patterns in Android smartphones. This work however requires victims’
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Table 6
Comparison of in-air acoustic-based communication work.
Work Technique Operating Range Frequency Band Audibilit Throughput
8 8 y y 8
Dhwani [146] OFDM 10 cm 0-22 kHz Audible 2.4 kbps
Priwhisper [147] FSK 30 cm 8-10 kHz Audible 1 kbps
Matsuoka et al. [149] OFDM 3m 5-10 kHz Audible Hundreds bps
Dolphin [150] OFDM 8 m 8-20 kHz Audible 50 bps
Ka et al. [151] Chirp Quaternary Orthogonal Keying 2.7 m 18-20 kHz Near-Ultrasonic 15 bps
Chirp [152] Chirp Binary Orthogonal Keying 25 m 19.5-22 kHz Near-Ultrasonic 166 bps
U-Wear [153] Gaussian Minimum-Shift Keying 20 m 17-19 kHz Near-Ultrasonic 2.7 kbps
Backdoor [154] N/A N/A 40 kHz Ultrasonic 4 kbps
Dolphin Attack [130] N/A 15 cm 40 kHz Ultrasonic N/A
Bai and Liu et al. [162] AM & OFDM 10 cm 48 kHz Ultrasonic 47.49 kbps
smartphones to provide acoustic-based sensing, which might be imprac- Local | Cloud
tical in the real attack scenario. On the contrary, KeyListener [118, : User Command
. o . L . i c d d T ;
119] actively transmits inaudible acoustic signals and infers human compice | \!;Jlr-{ Spe‘:‘*;i‘:e“"' emman ‘ "a‘::gl::;i‘;age and Text .
keystrokes by analyzing the signals reflected back. This work exploits |
. . . . . . R R
energy attenuation of acoustic signals to determine a coarse-grained Assistant @ L{Temo Speech }‘jrr::i{ Natural Language Contoxt
keystroke area, and develops a geometric-based approach combin- Response | Engine Processing
ing with finger movements between two keystrokes to enhance the :
recognition performance. BEH6 App Functionality 605
ﬁ @ = | Data Needed for Actions AN
= I Smart Home Service A
5.4. Audio adversarial attacks . : Provider (38)
|

Adversarial attacks were originally studied in image recognition.
The adversarial images include small perturbations of less noticeable
background pixels in addition to the original images. The subtle mod-
ifications are undetectable, but the images can be misclassified by
classification models. Similar to the image adversarial attacks, some
studies [126-131] found they can also generate adversarial examples
against DNN-based speech recognition models, named as audio ad-
versarial attacks. These attacks are imperceptible to humans, but the
voice assistant systems can be covertly jammed, mistakenly recognize
commands, or secretly controlled. For instance, CommanderSong [127]
embeds voice commands into a piece of music to attack voice assistant
systems without the awareness of victims. This type of attack can make
malicious commands spread on the Internet (e.g., YouTube) and radio,
potentially affecting millions of users. Similar to CommanderSong,
Adversarial Music [131] jams the voice assistants with inconspicuous
adversarial music. This work targets the attack on wake-word detection
systems and creates a real-time Denial-of-Service (DoS) attack that can
be launched physically over the air. Instead of embedding malicious
commands into music, an existing study [128] injects unnoticeable
perturbations into voice commands, making the voice assistant rec-
ognize the commands as any adversary-desired phrase. However, this
study does not consider the impact of over-the-air propagation, such
as device distortion, channel effect, and ambient noise. Li et al. [126]
first measure the CIR and integrate it into the adversarial example
training process toward practical audio examples, which can make the
generated adversarial examples remain effective while being played
over the air in the physical world. Instead of directly measuring the CIR,
Metamorph [129] captures the core distortion’s impact from a small
set of perturbation measurements and then uses a domain adaptation
algorithm to refine the perturbation to improve the attack accuracy
and range. Different from previous studies that attack voice assistant
systems through software design, Dolphin Attack [130] modulates
voice commands from audible frequency bands to ultrasonic frequency
bands employing Amplitude Modulation (AM) and utilizes non-linearity
of microphones in mobile devices to demodulate received signals and
launch attacks.

5.5. Acoustic vibration attacks
Speech privacy is vital in various daily scenarios, such as private

meetings, phone conversations, or listen to radio. Traditional methods
such as sound-proof walls have been used to prevent eavesdropping.
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Fig. 16. Illustration of a voice assistant system.

In addition, to prevent potential snooping via built-in microphones,
users can simply deny the microphone usage permission. However,
studies found that freely accessible motion sensors could leak the
private speech information. For example, Gyrophone [132] confirms
that the inbuilt gyroscope of smartphones can be used to identify
speaker’s gender by listening to acoustic signals from an external
loudspeaker. Accelword [133] uses the inbuilt accelerometer of mobile
devices to extract hotwords (e.g., “Okay Google”, “Hi Galaxy”) from
human voices. Taking advantage of higher sampling rate, Pitchln [134]
uses motion sensors in IoT devices to eavesdrop speech. The authors
employ a group of sensors in parallel with temporal offset to further
improve the sampling rate, named as Time Interleaved Analog-Digital-
Conversion (TI-ADC). Different from the aforementioned studies, Spear-
phone [135] explores the feasibility of revealing the voices played
by the smartphone’s loudspeakers using the phone’s inbuilt motion
sensors. Spearphone can perform gender classification and speaker
identification, as well as speech recognition and even reconstruction.

5.6. Voice assistant privacy protection

Obtaining informatic messages while protecting user’s privacy is
an important part of voice assistant systems. As shown in Fig. 16, a
voice assistant system involves a local device (e.g., smartphone, smart
speaker) and a cloud service provider. When a user sends a voice
command to the local device, it then is captured by the microphone
and transmitted to the cloud for processing using Natural Language
Processing (NLP) to understand the content. After that, the interpreted
content is further sent to the data centers to trigger the actions, such
as playing music, controlling other smart home devices, and even per-
form shopping online. However, most users do not use voice assistant
systems for shopping due to two privacy concerns: (1) their voice
recordings are uploaded to the cloud instead of saved in the local; (2)
the system may make authentication mistakes to leak their sensitive
information. While voice assistant systems let users review and delete
voice recordings, a recent study shows that users are unaware (or do
not use) those privacy controls [179].

With the development of edge computing, a related study [136]
builds a decentralized voice processing system to reduce the depen-
dency on the cloud, so that it is not necessary to upload sensitive voices
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into the cloud. You Talk Too Much [137] and Spreech [138] locally
sanitize voice inputs before they are transmitted to the cloud for pro-
cessing. Other studies [139,140,144] use machine learning techniques
to detect malicious commands being spoken to voice assistant systems
in order to help users configure the permissions they grant to third
parties.

A continuous authentication scheme, VAuth [141] for voice assis-
tant systems, is proposed to defend against authentication mistakes.
Specifically, Vauth collects the body-surface vibrations using wearable
devices and compares them with the voice commands received by the
voice assistant system. Another work [142] combines multi factors,
including voice, video, head, and body movements, for secure authen-
tication. Blue et al. [143] propose a two-factor authentication system
using mobile devices and IoT devices besides of voice biometrics. They
use the microphones of both mobile and IoT devices to measure the
Direction-of-Arrival (DoA) in order to localize the sound source of a
command. Only the sound sources close to the mobile device can be
accepted by the voice assistant system.

6. Short-range communication

Apart from acoustic-based sensing applications, acoustic-based
short-range communication also attracts considerable attention, be-
cause of the wide availability of audio equipment in mobile devices.
The structure of such applications is shown in Fig. 17, and the related
explorations are summarized in Table 6.

Audible Communication. There is active research [145-147] using
audible acoustic signals for wireless communications. Early work [145]
evaluates the impact of standard modulation techniques (i.e., amplitude
and frequency shift keying, spread-spectrum modulation) on human
perceptions, and builds a communication system with good user ex-
perience by selecting the appropriate one. Dhwani [146] implements
a near field communication with off-the-shelf phones and achieves a
data rate up to 2.4 kbps leveraging the full audible frequency band.
This system uses OFDM and the phase shift keying to mitigate the
interference of ambient noise and multipath effect. PriWhisper [147]
uses the 8 ~ 10 kHz audible frequency band to enable short-range com-
munication with 1 kbps throughput. PriWhisper adopts frequency shift
keying to modulate the signal and estimate the background noise level
to assist the transmitter to determine the signal strength. Moreover,
Dhwani and PriWhisper both implement friendly jamming techniques
to carry out secure communication. Specifically, a receiver transmits
a random jamming signal while a sender is transmitting the data
signal. Since only the receiver knows the jamming signal, the legitimate
receiver could decode the record signals whereas the attackers cannot.
However, the audible sounds used in the communication are within
the human-perceptible frequency range, resulting in unpleasant user
experience.

Communication Through Embedding Message in Common Au-
dio. To improve user experience, another body of work [148-151]
leverages the information-concealing technique for audible acoustic
communication. Two early systems [148,149] realize the impercepti-
ble acoustic communication with modulating data using OFDM and
embedding the signal in regular audio information (e.g., audio sounds
from the TV program). To avoid significant quality degrading, the
proposed method replaces high-frequency band, i.e., the band out of
most human perceptions, of regular audio information with modulated
data. These systems transmit short messages from speakers to mobile
devices at a medium distance (i.e., around 3 m), and the throughput
can be several hundred bps. Other than replacing high frequency band
signals, Dolphin [150] takes advantage of masking effects of human
auditory system to transmit data-carrying signals and daily sounds
simultaneously without human perception. However, all these explo-
rations can only achieve a limited throughput lower than 1 kbps. And
their communication process still induces audible sounds.
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Fig. 17. Structure for acoustic-based short-range communication applications.

Near-Ultrasonic Communication. Near-ultrasonic (i.e., 18 ~
20 kHz) acoustic signal is just out of the range of human perceptions,
but can still be recorded by microphones of a smartphone and used for
wireless communications. Chirp [152] leverages near-ultrasonic band
chirp signals to support a longer communication range (i.e., 25 m).
This work applies the expected auto-correlation characteristic of chirp
signal, i.e., chirp binary orthogonal keying, to eliminate frequency
and time selective fading and improve transmission quality of acous-
tic signals. Based on Chirp, Ka et al. [151] leverage near-ultrasonic
chirp signals for wireless communications between TVs and mobile
devices, which achieves meter-level range with a very low volume.
To be specific, they develop novel synchronization and carrier sensing
algorithms to differentiate chirp signal from ambient noise and perform
communication. However, these studies can only carry out 15— 16 kbps
throughput. U-Wear [153] implements an ultrasonic communication
for wearable medical devices, including a physical layer, a data link
layer, and a network layer. This work employs Gaussian minimum-shift
keying and OFDM for narrowband and wideband signaling schemes
respectively, and can achieve 2.7 kbps throughput leveraging a lim-
ited 2 kHz bandwidth. Due to the narrow frequency bandwidth, the
throughput of this kind of approach is limited.

Ultrasonic Communication. Typically, due to the low-pass filter
(whose cut-off frequency is around 24 kHz) of audio infrastructures,
commercial mobile devices cannot record the ultrasonic acoustic sig-
nals. Two research studies [130,154] discover the non-linearity prop-
erty of microphones, which contributes to wireless communications
on ultrasonic frequency band of acoustic signals. Specifically, Back-
door [154] modulates data on ultrasound signal using FM to achieve
inaudibility. Through signal design and non-linearity of microphone,
an audible band signal could be reconstructed and demodulated for
communication. The throughput they achieved is up to 4 kbps. Dolphin
Attack [130] modulates voice commands on an ultrasonic carrier signal
through AM to issue an inaudible voice command attack. The voice
commands can be recorded by the microphone with its non-linearity.
A more recent study [162] innovatively use the OFDM-multiplexing
technique together with a non-linearity model and AM to transmit data
over multiple narrow-band channels in an ultrasound frequency band
in order to achieve high-throughput (i.e., 47.49 kbps) and inaudibility
simultaneously. All of the three approaches need extra speakers because
regular mobile devices cannot transmit ultrasonic signals.

Water-based Medium Acoustic Communication. Besides aerial
wireless communications, acoustic signals can also propagate well in
water-based medium. Based on this property, studies [155-158] lever-
age OFDM to increase the throughput in underwater acoustic com-
munications. A more recent work [159] designs specialized hardware
combined with quadrature phase shift keying modulation to further
achieve a throughput of 250 kbps for communications in mineral oil.
There are also studies [160,161] of transmitting very short ultra-
sonic pulses in body tissues with an adaptively controllable duty cycle
following a pseudo-random adaptive time-hopping pattern to realize
communications.

7. Limitations and discussions
While acoustic-based systems have been proven to be powerful and

versatile with a broad range of applications, there still exist several
limitations and open issues for future research.
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Interference of Environmental Noises. Environmental noises can
significantly intrude acoustic-based systems for sensing and commu-
nications. Many acoustic-based sensing systems need training profiles
for activity recognition [180], gesture recognition [37] and indoor
localization [71], etc. When such profiles are mixed with noises from
conversations or physical activities of people nearby, the performance
of those systems will be degraded. A few studies [22,38] incorpo-
rate machine learning methods to generate noise-independent profiles
to solve this problem. On the other hand, with ubiquitous acoustic
noises, acoustic communication systems have to narrow their opera-
tion bandwidths to mitigate adverse impacts of the noises. This will
reduce communication throughputs. More efforts, such as intelligent
profile calibration with multiple acoustic signals and advanced data
filtering/machine learning techniques, are needed to improve the noise
resistance of acoustic-based applications in future research work.

Impact of Location and Orientation. In addition to environmental
changes, a user’s location and orientation are critical for the perfor-
mance of acoustic-based systems. Due to the omni-directional sensing
in acoustic signals, the location and orientation are usually recorded by
the patterns of acoustic signals, affecting most sensing and recognition
applications. For example, an earlier system [15] recognizes driving
activities leveraging the Doppler effects of acoustic signals, which re-
quires users to keep the same location and orientation each time to keep
the recognition performance. Also, for most human-involved activities,
different locations and orientations could induce different variations
on the ToA/TDoA patterns sensed by acoustic signals. To deal with
this, a recent work [22] utilizes an adversary network to eliminate
the location and orientation information from received signals, and
achieve a more ubiquitous acoustic-based sensing. However, similar to
other machine learning-based approaches, this work requires additional
training efforts, which hinders its wide deployment. Eliminating the
location and orientation information from acoustic sensed patterns
remains an open issue.

Impact of Multi-user in the Sensing Area. In a sensing applica-
tion, it is highly possible that there are multiple users in a specific
area. However, when multiple users are moving around in the sensing
area, it is difficult to monitor their movements simultaneously with
acoustic signals. Thus most acoustic-based sensing approaches only
focus on a single user. To solve this problem, systems [41,102] treat
the movements of surrounding people other than the target one as the
interference, and apply various methods (e.g., differential CIR, signal
gradient) to mitigate them. However, these systems do not intrinsi-
cally handle the multi-user sensing problem. Therefore, more research
is needed to develop advanced signal separation and differentiation
methods. Potential future directions might lie on fusing other sensors
(e.g., camera, WiFi), instead of merely using acoustic signals.

Concern of Security and Privacy. The rapid advancement of
acoustic-based sensing techniques raises serious security and privacy
concerns. For example, human conversations near the sensing devices
can be secretly recorded and subsequently leaked to malicious ad-
versaries. Studies [116-118] illustrate various potential side-channel
attacks on eavesdropping keystrokes or unlocking patterns with the
assistance of acoustic signals. More recent investigations [127,130]
demonstrate the possibility of utilizing acoustic signals to launch audio
adversarial attacks on popular voice assistant systems (e.g., Apple
Siri and Google Now). Some other studies [132,133] show that the
readings of smartphones’ inertial sensors can be used to reveal speech
information (e.g., gender of the speaker, content of the speech). All of
these elevate the awareness of potential security and privacy infringe-
ments. For countermeasures, some studies [117,130] suggest users
enhance and control microphones to defend against keystroke snooping
attacks [120,124] and acoustic vibration attacks [132,133]. Another
study [144] uses machine learning techniques to defend against mali-
cious hidden voice commands. These can reduce the privacy concern
for future acoustic-based application deployment. The defense strategy
of the speech-induced vibration attacks [134,135] using motion sensors
remains an open question.
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8. Conclusion

Leveraging widely-deployed and low-cost audio infrastructures,
many research studies have shown the feasibility and effectiveness of
using acoustic signals in performing sensing and communication appli-
cations. In this paper, we survey up-to-date studies on acoustic-based
applications and relative techniques. We first describe key acoustic-
based techniques, such as signal strength variation, phase change,
Doppler shift, ToA and FMCW, TDoA, and CIR. With these techniques,
a broad array of emerging applications are developed using acoustic
signals. We review these applications following four categories: recog-
nition and tracking, localization and navigation, security and privacy,
short-range communication. These compelling acoustic-based studies
have shown promising performance in various application domains.
Moreover, we discuss the limitations and challenges of current acoustic-
based approaches, and point out a few possible future directions
to address these limitations and further extend the acoustic-based
applications.
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